Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 13(1): 5100, 2023 03 29.
Article in English | MEDLINE | ID: covidwho-2265253

ABSTRACT

This cross-sectional study aimed to investigate the hypothesis that permanent capillary damage may underlie the long-term COVID-19 sequela by quantifying the retinal vessel integrity. Participants were divided into three subgroups; Normal controls who had not been affected by COVID-19, mild COVID-19 cases who received out-patient care, and severe COVID-19 cases requiring intensive care unit (ICU) admission and respiratory support. Patients with systemic conditions that may affect the retinal vasculature before the diagnosis of COVID-19 infection were excluded. Participants underwent comprehensive ophthalmologic examination and retinal imaging obtained from Spectral-Domain Optical Coherence Tomography (SD-OCT), and vessel density using OCT Angiography. Sixty-one eyes from 31 individuals were studied. Retinal volume was significantly decreased in the outer 3 mm of the macula in the severe COVID-19 group (p = 0.02). Total retinal vessel density was significantly lower in the severe COVID-19 group compared to the normal and mild COVID-19 groups (p = 0.004 and 0.0057, respectively). The intermediate and deep capillary plexuses in the severe COVID-19 group were significantly lower compared to other groups (p < 0.05). Retinal tissue and microvascular loss may be a biomarker of COVID-19 severity. Further monitoring of the retina in COVID-19-recovered patients may help further understand the COVID-19 sequela.


Subject(s)
COVID-19 , Humans , Fluorescein Angiography/methods , Cross-Sectional Studies , Retina/diagnostic imaging , Retinal Vessels/diagnostic imaging , Microvessels/diagnostic imaging , Tomography, Optical Coherence/methods
3.
WIREs Mech Dis ; 14(5): e1560, 2022 09.
Article in English | MEDLINE | ID: covidwho-1898962

ABSTRACT

We review the current understanding of formation and development of the coronary microvasculature which supplies oxygen and nutrients to the heart myocardium and removes waste. We emphasize the close relationship, mutual development, and communication between microvasculature endothelial cells and surrounding cardiomyocytes. The first part of the review is focused on formation of microvasculature during embryonic development. We summarize knowledge about establishing the heart microvasculature density based on diffusion distance. Then signaling mechanisms which are involved in forming the microvasculature are discussed. This includes details of cardiomyocyte-endothelial cell interactions involving hypoxia, VEGF, NOTCH, angiopoietin, PDGF, and other signaling factors. The microvasculature is understudied due to difficulties in its visualization. Therefore, currently available imaging methods to delineate the coronary microvasculature in development and in adults are discussed. The second part of the review is dedicated to the importance of the coronary vasculature in disease. Coronary microvasculature pathologies are present in many congenital heart diseases (CHD), especially in pulmonary atresia, and worsen outcomes. In CHDs, where the development of the myocardium is impaired, microvasculature is also affected. In adult patients coronary microvascular disease is one of the main causes of sudden cardiac death, especially in women. Coronary microvasculature pathologies affect myocardial ischemia and vice versa; myocardial pathologies such as cardiomyopathies are closely connected with coronary microvasculature dysfunction. Microvasculature inflammation also worsens the outcomes of COVID-19 disease. Our review stresses the importance of coronary microvasculature and provides an overview of its formation and signaling mechanisms and the importance of coronary vasculature pathologies in CHDs and adult diseases. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology.


Subject(s)
Cardiovascular Diseases , Myocardium , Myocytes, Cardiac , Adult , COVID-19 , Cardiovascular Diseases/metabolism , Endothelial Cells , Female , Humans , Microvessels/diagnostic imaging , Myocardium/metabolism , Myocytes, Cardiac/metabolism
4.
Radiol Med ; 127(2): 162-173, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1626023

ABSTRACT

PURPOSE: COVID-19-related acute respiratory distress syndrome (ARDS) is characterized by the presence of signs of microvascular involvement at the CT scan, such as the vascular tree in bud (TIB) and the vascular enlargement pattern (VEP). Recent evidence suggests that TIB could be associated with an increased duration of invasive mechanical ventilation (IMV) and intensive care unit (ICU) stay. The primary objective of this study was to evaluate whether microvascular involvement signs could have a prognostic significance concerning liberation from IMV. MATERIAL AND METHODS: All the COVID-19 patients requiring IMV admitted to 16 Italian ICUs and having a lung CT scan recorded within 3 days from intubation were enrolled in this secondary analysis. Radiologic, clinical and biochemical data were collected. RESULTS: A total of 139 patients affected by COVID-19 related ARDS were enrolled. After grouping based on TIB or VEP detection, we found no differences in terms of duration of IMV and mortality. Extension of VEP and TIB was significantly correlated with ground-glass opacities (GGOs) and crazy paving pattern extension. A parenchymal extent over 50% of GGO and crazy paving pattern was more frequently observed among non-survivors, while a VEP and TIB extent involving 3 or more lobes was significantly more frequent in non-responders to prone positioning. CONCLUSIONS: The presence of early CT scan signs of microvascular involvement in COVID-19 patients does not appear to be associated with differences in duration of IMV and mortality. However, patients with a high extension of VEP and TIB may have a reduced oxygenation response to prone positioning. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/therapy , Microvessels/diagnostic imaging , Respiration, Artificial/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Intensive Care Units , Italy , Length of Stay/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , SARS-CoV-2
5.
J Neurol Sci ; 421: 117308, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1033825

ABSTRACT

We evaluated the incidence, distribution, and histopathologic correlates of microvascular brain lesions in patients with severe COVID-19. Sixteen consecutive patients admitted to the intensive care unit with severe COVID-19 undergoing brain MRI for evaluation of coma or neurologic deficits were retrospectively identified. Eleven patients had punctate susceptibility-weighted imaging (SWI) lesions in the subcortical and deep white matter, eight patients had >10 SWI lesions, and four patients had lesions involving the corpus callosum. The distribution of SWI lesions was similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. Collectively, these radiologic and histopathologic findings add to growing evidence that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.


Subject(s)
Brain Injuries/diagnostic imaging , COVID-19/diagnostic imaging , Magnetic Resonance Imaging/methods , Microvessels/diagnostic imaging , Severity of Illness Index , Brain/blood supply , Brain/diagnostic imaging , Brain Injuries/etiology , COVID-19/complications , Humans , Intensive Care Units/trends , Male , Microvessels/injuries , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL